
Type Systems for Concurrent Programs

Naoki Kobayashi

Department of Computer Science

Tokyo Institute of Technology

kobayasi@kb.cs.titech.ac.jp

Abstract. Type systems for programming languages help reasoning about

program behavior and early �nding of bugs. Recent applications of type

systems include analysis of various program behaviors such as side ef-

fects, resource usage, security properties, and concurrency. This paper

is a tutorial of one of such applications: type systems for analyzing be-

havior of concurrent processes. We start with a simple type system and

extend it step by step to obtain more expressive type systems to reason

about deadlock-freedom, safe usage of locks, etc.

1 Introduction

Most of modern programming languages are equipped with type systems, which

help reasoning about program behavior and early �nding of bugs. This paper is

a tutorial of type systems for concurrent programs.

Functional programming language ML [19] is one of the most successful ap-

plications of a type system that are widely used in practice. The type system of

ML automatically infers what type of value each function can take, and checks

whether an appropriate argument is supplied to the function. For example, if

one de�nes a function to return the successor of an integer, the type system of

ML infers that it should take an integer and return an integer:

fun succ x = x+1;

val succ = fn : int -> int

Here, the line in the italic style shows the system's output. If one tries to apply

the function to a string by mistake, the type system reports an error before

executing the program:

f "a";

Error: operator and operand don't agree ...

Thanks to the type system, most of the bugs are found in the type-checking

phase.

Type systems for concurrent programming languages have been, however,

less satisfactory. For example, consider the following program in CML [25].

fun f(x:int) = let val y=channel() in recv(y)+x end;

Function f takes an integer as an argument. It �rst creates a new communication

channel y (by channel()) and then tries to receive a value from the channel. It

is blocked forever since there is no process to send a value on y. This function

is, however, type-checked in CML and given a type int ! int .

To improve the situation above, type systems for analyzing usage of con-

currency primitives have been extensively studied in the last decade [2, 4{6, 10{

13, 20{22, 31]. Given concurrent programs, those type systems analyze whether

processes communicate with each other in a disciplined manner, so that a mes-

sage is received by the intended process, that no deadlock happens, that no race

condition occurs, etc.

The aim of this paper is to summarize the essence of type systems for an-

alyzing concurrent programs. Since concurrent programs are harder to debug

than sequential programs, we believe that type systems for concurrent programs

should be applied more widely and play more important roles in debugging and

veri�cation of programs. We hope that this paper serves as a guide for those

who are interested in further extending type systems for concurrent programs or

incorporating some of the type systems into programming languages and tools.

We use the �-calculus [17, 18, 27] as the target language of type systems in

this paper. Since the �-calculus is simple but expressive enough to express various

features of real concurrent programming languages, it is not di�cult to extend

type systems for the �-calculus to those for full-scale programming languages.

Section 2 introduces the syntax and operational semantics of the �-calculus.

In Sections 3{8, we �rst present a simple type system, and extend it step by step

to obtain more advanced type systems. Section 9 concludes this paper.

2 Target Language

We use a variant of the �-calculus [17, 18, 27] as the target language. The �-

calculus models processes interacting with each other through communication

channels. Processes and communication channels can be dynamically created,

and references to communication channels can be dynamically exchanged among

processes so that the communication topology can change dynamically.

De�nition 1 (processes, values). The sets of expressions, process expres-

sions, and value expressions, ranged over by A, P , and v respectively, are de�ned

by the following syntax.

A ::= P j v

P ::= 0 j x![v

1

; : : : ; v

n

] j x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P j (P jQ)

j (�x : �)P j �P j if v then P else Q

v ::= x j true j false

In the de�nition above, � denotes a type introduced in later sections. The type

information need not be speci�ed by a programmer (unless the programmer

wants to check the type); As in ML [19], it can be automatically inferred in

most of the type systems introduced in this paper.

Process 0 does nothing. Process x![y

1

; : : : ; y

n

] sends a tuple [v

1

; : : : ; v

n

] of

values on channel x. Process x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P waits to receive a tuple

[v

1

; : : : ; v

n

] of values, binds y

1

; : : : ; y

n

to v

1

; : : : ; v

n

, and behaves like P . P jQ

runs P and Q in parallel. Process (�x)P creates a fresh communication channel,

binds x to it, and behaves like P . Process �P runs in�nitely many copies of P

in parallel. Process if v then P else Q behaves like P if v is true and behaves

like Q if v is false. For simplicity, we assume that a value expression is either

a boolean (true, false) or a variable, which is bound to a boolean or a channel

by an input pre�x (x?[y

1

; : : : ; y

n

]:) or a �-pre�x.

We write P �! Q if Q is reduced to P in one step (by a communication

or reduction of a conditional expression). The formal operational semantics is

found in the literature on the �-calculus [17, 27].

We give below simple examples, which we will use later to explain type

systems. In some of the examples, we use integers and operations on them.

Example 1 (ping server). The process �ping? [r]: r![] works as a ping server. It

waits to receive a message on channel ping and sends a null tuple on the received

channel. A typical client process is written as: (�reply) (ping ![reply] j reply?[]: P).

It creates a fresh channel reply for receiving a reply, checks whether the ping

server is alive by sending the channel, waits to receive a reply, and then executes

P . Communications between the server and the client proceed as follows:

�ping? [r]: r![] j (�reply) (ping ![reply] j reply?[]: P)

�! �ping? [r]: r![] j (�reply) (reply![] j reply?[]: P)

�! �ping? [r]: r![] j (�reply)P

In the second line, (�reply) denotes the fact that the channel reply is a new

channel and known by only the processes in the scope.

Example 2 (recursive processes). Recursive processes can be de�ned using repli-

cations (�P). Consider a process of the form (�p) (�p?[x

1

; : : : ; x

n

]: P jQ). Each

time Q sends a tuple [v

1

; : : : ; v

n

] along p, the process [v

1

=x

1

; : : : ; v

n

=x

n

]P is

executed. So, the process �p?[x

1

; : : : ; x

n

]: P works as a process de�nition. We

write let proc p[x

1

; : : : ; x

n

] = P in Q for (�p) (�p?[x

1

; : : : ; x

n

]: P jQ) below.

For example, the following expression de�nes a recursive process that takes a

pair consisting of an integer n and a channel r as an argument and sends n

messages on r.

let proc p[n; r] = if n � 0 then 0 else (r![] j p! [n� 1; r]) in � � �

Example 3 (locks and objects). A concurrent object can be modeled by multiple

processes, each of which handles each method of the object [12, 16, 23]. For ex-

ample, the following process models an object that has an integer as a state and

provides services to set and read the state.

(�s) (s![0] j �set?[new]: s?[old]: (s![new] j r![])

j �read?[r]: s?[x]: (s![x] j r![x]))

The channel s is used to store the state. The process above waits to receive

request messages on channels set and read. For example, when a request set![3]

arrives, it sets the state to 3 and sends an acknowledgment on r.

Since more than one processes may access the above object concurrently,

some synchronization is necessary if a process wants to increment the state of

the object by �rst sending a read request and then a set request. A lock can

be implemented using a communication channel. Since a receiver on a channel

is blocked until a message becomes available, the locked state can be modeled

by the absence of a message in the lock channel, and the unlocked state can

be modeled by the presence of a message. The operation to acquire a lock is

implemented as the operation to receive a message along the lock channel, and

the operation to release the lock as the operation to send a message on the

channel. For example, the following process increment the state of the object

using a lock channel lock .

lock?[]: (�r) (read! [r] j r?[x]: (�r

0

) (set![x+ 1; r

0

] j r

0

?[]: lock![]))

3 A Simple Type System

In this section, we introduce a simple type system [7, 30] for our language. It pre-

vents simple programming errors like: �ping? [r]: r![] j ping ![true]; which sends a

boolean instead of a channel along channel ping , and �ping? [r]: r![] j ping ![x; y],

which sends a wrong number of values on ping . Most of the existing programming

languages that support concurrency primitives have this kind of type system.

In order to avoid the confusion between booleans and channels and the arity

mismatch error above, it is su�cient to classify values into booleans and channels,

and to further classify channels according to the shape of transmitted values.

We de�ne the syntax of types as follows.

� ::= bool j [�

1

; : : : ; �

n

] chan

� ::= � j proc

Type bool is the type of booleans, and [�

1

; : : : ; �

n

] chan is the type of channels

that are used for transmitting a tuple of values of types �

1

; : : : ; �

n

. For example,

if x is used for sending a pair of booleans, x must have type [bool;bool] chan. A

special type proc is the type of processes. The programming errors given in the

beginning of this section are prevented by assigning to ping a type [bool] chan.

An expression is called well-typed if each value is consistently used according

to its type. The notion of well-typeness is relative to the assumption about free

variables, represented by a type environment. It is a mapping form a �nite set of

variables to types. We use a meta-variable � to denote a type environment. We

write ; for the typing environment whose domain is empty, and write dom(�) for

the domain of � . When x 62 dom(�), we write �; x : � for the type environment

obtained by extending the type environment � with the binding of x to � . We

write � � �

0

when dom(�) � dom(�

0

) and � (x) = �

0

(x) for each x 2 dom(�

0

).

b 2 ftrue; falseg

; ` b : bool

(ST-Bool)

x : � ` x : �
(ST-Var)

�

0

` A : � � � �

0

� ` A : �

(ST-Weak)

; ` 0 : proc
(ST-Zero)

� ` P : proc

� ` Q : proc

� ` P jQ : proc

(ST-Par)

�; x : � ` P : proc

� is a channel type

� ` (�x : �)P : proc

(ST-New)

� ` P : proc

� ` �P : proc

(ST-Rep)

� ` x : [�

1

; : : : ; �

n

] chan � ` v

i

: �

i

(for each i 2 f1; : : : ; ng)

� ` x![v

1

; : : : ; v

n

] : proc

(ST-Out)

� ` x : [�

1

; : : : ; �

n

] chan �; y : �

1

; : : : ; y : �

n

` P : proc

� ` x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P : proc

(ST-In)

� ` v : bool � ` P : proc � ` Q : proc

� ` if v then P else Q : proc

(ST-If)

Fig. 1. Typing rules for the simple type system

Intuitively, � � �

0

means that � represents a stronger type assumption about

variables.

We write � ` A : � if an expression A (which is either a value expression or a

process expression) is well-typed and has type � under the type environment � .

The relation � ` A : � is de�ned by the set of inference rules shown in Figure 1.

Most of the rules should be self-explanatory for those who are familiar with

type systems for sequential programming languages. The rule (ST-Weak) means

that we can replace a type environment with a stronger assumption. It is equiv-

alent to the usual weakening rule for adding an extra type binding to the type

environment. We use (ST-Weak) since it is more convenient for extending the

type system later. The rule (ST-New) checks that x is indeed used as a channel

of the intended type in P .

The rule (ST-Out) checks that the destination channel x indeed has a chan-

nel type, and that each argument v

i

has the type �

i

, as speci�ed by the type of

x. The rule (ST-In) checks that x has a channel type, and that the continuation

part P is well-typed provided that each formal parameter y

i

is bound to a value

of the type �

i

as speci�ed by the type of x. Those rules are analogous to the

rules for function application and abstraction.

The above type system guarantees that if a process is well-typed, there is no

confusion between booleans and channels or arity mismatch error.

4 A Type System with Input/Output Modes

Even if a program is type-checked in the simple type system in the previous

section, the program may still contain a lot of simple programming errors. For

example, the ping server in Example 1 may be written as �ping? [r]: r?[]:0 by

mistake. Then, clients cannot receive any reply from the server. Similarly, a client

of the server may receive a message along ping instead of sending a message

either by mistake or maliciously. In Example 3, a user of the object may receive

a message along the interface channels set and read instead of sending a message.

We can prevent the above-mentioned errors by classifying the types of chan-

nels according to whether the channels can be used for input (receiving a value)

or output (sending a value) [21]. We rede�ne the syntax of types as follows:

� ::= bool j [�

1

; : : : ; �

n

] chan

M

M (mode) ::=! j? j!?

A mode M denotes for which operations channels can be used. A channel of

type [�

1

; : : : ; �

n

] chan

M

can be used for output (input, resp.) only if M contains

the output capability ! (the input capability ?, resp.). The wrong ping server

�ping? [r]: r?[]:0 is rejected by assigning to ping the type [[] chan

!

] chan

?

.

As in type systems for sequential programming languages, we write �

1

� �

2

when a value of type �

1

may be used as a value of type �

2

. It is de�ned as

the least reexive relation satisfying [�

1

; : : : ; �

n

] chan

!?

� [�

1

; : : : ; �

n

] chan

?

and [�

1

; : : : ; �

n

] chan

!?

� [�

1

; : : : ; �

n

] chan

!

. It is possible to relax the subtyping

relation by allowing, for example, [�

1

; : : : ; �

n

] chan

!

to be co-variant in �

1

; : : : ; �

n

(see [21]). We do not do so in this paper for the sake of simplicity.

The binary relation � on type environments is re-de�ned as: � � �

0

if and

only if dom(�) � dom(�

0

) and � (x) � �

0

(x) for each x 2 dom(�

0

).

The new typing rules are obtained by replacing only the rules (ST-Out) and

(ST-In) of the previous type system with the following rules:

� ` x : [�

1

; : : : ; �

n

] chan

!

� ` v

i

: �

i

for each i 2 f1; : : : ; ng

� ` x![v

1

; : : : ; v

n

] : proc

(MT-Out)

� ` x : [�

1

; : : : ; �

n

] chan

?

�; y : �

1

; : : : ; y : �

n

` P : proc

� ` x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P : proc

(MT-In)

5 A Linear Type System

The type system in Section 4 prevents a ping server from using a reply channel

for input, but it does not detect a mistake that the server forgets to send a

reply. For example, the process �ping? [r]: if b then r![] else 0 forgets to send

a reply in the else-branch: Another typical mistake would be to send more than

one reply messages: �ping? [r]: (r![] j r![]).

� ` P : proc � ` Q : proc

� j� ` P jQ : proc

(LT-Par)

� ` P : proc

!� ` �P : proc

(LT-Rep)

�

i

` v

i

: �

i

for each i 2 f1; : : : ; ng

(x : [�

1

; : : : ; �

n

] chan

(?

0

;!

1

)

) j�

1

j � � � j�

n

` x![v

1

; : : : ; v

n

] : proc

(LT-Out)

�; y : �

1

; : : : ; y : �

n

` P : proc

(x : [�

1

; : : : ; �

n

] chan

(?

1

;!

0

)

) j� ` x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P : proc

(LT-In)

� ` v : bool � ` P : proc � ` Q : proc

� j� ` if v then P else Q : proc

(LT-If)

Fig. 2. Typing rules for the linear type system

We can prevent the errors above by further classifying the channel types

according to how often channels are used [13]. The syntax of types is rede�ned

as follows:

� ::= bool j [�

1

; : : : ; �

n

] chan

(?

m

1

;!

m

2

)

m (multiplicity) ::= 0 j 1 j !

Multiplicities m

1

and m

2

in the channel type [�

1

; : : : ; �

n

] chan

(?

m

1

;!

m

2

)

describes

how often the channel can be used for input and output respectively. Multiplicity

0 means that the channel cannot be used at all for that operation, 1 means that

the channel should be used once for that operation, and ! means that the channel

can be used for that operation an arbitrary number of times. By assigning to

ping a type [[] chan

(?

0

;!

1

)

] chan

(?

!

;!

0

)

, we can detect programming errors like

�ping? [r]: (r![] j r![]) and �ping? [r]: if b then r![] else 0 above.

We de�ne the binary relation m

1

� m

0

1

as the least partial order that satis�es

! � 0 and ! � 1. The subtyping relation is re-de�ned as the least reexive

relation satisfying the rule:

m

1

� m

0

1

m

2

� m

0

2

[�

1

; : : : ; �

n

] chan

(?

m

1

;!

m

2

)

� [�

1

; : : : ; �

n

] chan

(?

m

0

1

;!

m

0

2

)

The subtyping relation allows, for example, a channel of type [] chan

(?

!

;!

!

)

to

be used as a channel of type [] chan

(?

1

;!

0

)

, but it does not allow a channel of

type [] chan

(?

0

;!

1

)

(which must be used once for output) to be used as a channel

of type [] chan

(?

0

;!

0

)

(which must not be used for output).

We re-de�ne � � �

0

by: � � �

0

if and only if (i) dom(�) � dom(�

0

), (ii)

for each x 2 dom(�

0

), � (x) � �

0

(x), and (iii) for each x 2 dom(�)ndom(�

0

),

� (x) is bool or a channel type of the form [�

1

; : : : ; �

n

] chan

(?

0

;!

0

)

. Note that

x : �; y : [] chan

(?

0

;!

1

)

� x : � does not hold, since the type environment in the

lefthand side indicates that y should be used for output.

Typing rules are shown in Figure 2 (Only the modi�ed rules are shown:

The other rules are the same as those of the previous type system). Notice the

changes in the rules (LT-Out), (LT-In), (LT-Par), etc. In the rules (XX-Par)

in the previous type systems, a type environment is shared by sub-processes.

The sharing of a type environment is invalid in the linear type system, since

the type environment contains information about how often channels are used.

For example, if x has type [] chan

(?

0

;!

1

)

both in P and Q, x is used twice in

P jQ, and therefore x should have type [] chan

(?

0

;!

!

)

. The operation � j� in

rule (LT-Par) represents this kind of calculation. It is de�ned by:

(� j�)(x) =

8

<

:

� (x) j�(x) if x 2 dom(�) \ dom(�)

� (x) if x 2 dom(�)ndom(�)

�(x) if x 2 dom(�)ndom(�)

bool jbool = bool

([�

1

; : : : ; �

n

] chan

(?

m

1

;!

m

2

)

) j ([�

1

; : : : ; �

n

] chan

(?

m

0

1

;!

m

0

2

)

)

= [�

1

; : : : ; �

n

] chan

(?

m

1

+m

0

1

;!

m

2

+m

0

2

)

m

1

+m

2

=

8

<

:

m

2

if m

1

= 0

m

1

if m

2

= 0

! otherwise

The operation !� in rule (LT-Rep) is de�ned by:

(!�)(x) = !(� (x))

!bool = bool

!([�

1

; : : : ; �

n

] chan

(?

m

1

;!

m

2

)

) = [�

1

; : : : ; �

n

] chan

(?

!m

1

;!

!m

2

)

!m =

�

0 if m = 0

! otherwise

In rule (T-If), the type environment � is shared between the then-clause

and the else-clause because either the then-clause or the else-clause is executed.

We can check that a ping server does not forget to send a reply by type-

checking the server under the type environment ping : [[] chan

(?

0

;!

1

)

] chan

(?

!

;!

0

)

.

On the other hand, the wrong server �ping? [r]: if b then r![] else 0 fails to

type-check under the same type environment: In order for the server to be well-

typed, it must be the case that if b then r![] else 0 is well-typed under the

assumption r : [] chan

(?

0

;!

1

)

, but the else-clause violates the assumption.

Note, however, that in general the type system does not guarantee that a

channel of type [] chan

(?

0

;!

1

)

is used for output exactly once. Consider the pro-

cess: (�y) (�z) (y?[]: z![] j z?[]: (y![] jx![])). It is well-typed under the type envi-

ronment x : [] chan

(?

0

;!

1

)

, but the process does not send a message on x because

it is deadlocked. This problem is solved by the type system for deadlock-freedom

in Section 7.

6 A Type System with Channel Usage

As mentioned in Section 2 (Example 3), a channel can be used as a lock. It,

however, works correctly only if the channel is used in an intended manner:

When the channel is created, one message should be put into the channel (to

model the unlocked state). Afterwards, a process should receive a message from

the channel to acquire the lock, and after acquiring the lock, it should eventually

release the lock. The linear type system in Section 5 cannot guarantee such

usage of channels: Since a lock channel is used more than once, it is given type

[] chan

(?

!

;!

!

)

, which means that the channel may be used in an arbitrary manner.

Therefore, the type system cannot detect programming errors like:

lock?[]: hcritical sectioni(lock![] j lock![])

which allows two processes to acquire the lock simultaneously, and

lock?[]: hcritical sectioniif b then lock![] else 0

which forgets to release the lock in the else-clause.

We can prevent the errors above by putting into channel types information

about not only how often channels are used but also in which order channels are

used for input and output. We rede�ne the syntax of types as follows.

� ::= bool j [�

1

; : : : ; �

n

] chan

U

U (usages) ::= 0 j � j?:U j!:U j (U

1

jU

2

) j U

1

& U

2

j ��:U

A channel type is annotated with a usage [14, 28], which denotes how channels

can be used for input and output. Usage 0 describes a channel that cannot be

used at all. Usage ?:U describes a channel that is �rst used for input and then

used according to U . Usage !:U describes a channel that is be �rst used for output

and then used according to U . Usage U

1

jU

2

describes a channel that is used

according to U

1

and U

2

possibly in parallel. Usage U

1

& U

2

describes a channel

that is used according to either U

1

or U

2

. Usage ��:U describes a channel that is

used recursively according to [��:U=�]U . For example, ��:(0 & (!:�)) describes

a channel that can be sequentially used for output an arbitrary number of times.

We often write ? and ! for ?:0 and !:0 respectively. We also write �U and !U

for ��:(0 & (U j�)) and ��:(U j�) respectively. Usage �U describes a channel

that can be used according to U an arbitrary number of times, while usage !U

describes a channel that should be used according to U in�nitely often.

We can enforce the correct usage of a lock channel by assigning the usage

! j �?:! to it. We can also express linearity information of the previous section:

(?

m

1

; !

m

2

) is expressed by usage m

1

? jm

2

! where 1U = U and 0U = 0.

Before de�ning typing rules, we introduce a subusage relation U � U

0

, which

means that a channel of usage U can be used as a channel of usage U

0

. Here, we

de�ne it using a simulation relation. We consider a reduction relation U

'

�! U

0

on usages, where ' is a multiset consisting of ! and ?. It means that the operations

described by ' can be simultaneously applied to a channel of usage U , and the

resulting usage becomes U

0

. The reduction relation is de�ned by the rules in

Figure 3. In the �gure,] denotes the operator for multiset union. We also de�ne

the unary relation U

#

as the least relation that satis�es the following rules:

!:U

f!g

�! U

?:U

f?g

�! U

U

1

'

1

�! U

0

1

U2

'

2

�! U

0

2

U

1

jU

2

'

1

]'

2

�! U

0

1

jU

0

2

U

1

'

�! U

0

1

U

1

& U

2

'

�! U

0

1

U

2

'

�! U

0

2

U

1

& U

2

'

�! U

0

2

[��:U=�]U

'

�! U

0

��:U

'

�! U

0

Fig. 3. Usage reduction rules

0

#

U

1

#

U

2

#

(U

1

jU

2

)

#

U

1

#

_ U

2

#

(U

1

& U

2

)

#

([��:U=�]U)

#

��:U

#

Intuitively, U

#

means that a channel of usage U need not be used at all.

Using the above relations, the subusage relation is de�ned as follows.

De�nition 2 (subusage relation). The subusage relation � is the largest re-

lation that satis�es the following two conditions.

1. If U

1

� U

2

and U

2

'

�! U

0

2

, then U

1

'

�! U

0

1

and U

0

1

� U

0

2

for some U

0

1

.

2. If U

1

� U

2

and U

2

#

, then U

1

#

.

For example, U

1

&U

2

� U

1

and ! j ! �!:! hold. We re-de�ne the subtyping relation

so that [�

1

; : : : ; �

n

] chan

U

� [�

1

; : : : ; �

n

] chan

U

0

if U � U

0

. We write �

1

� �

2

if

(i)dom(�

1

) � dom(�

2

), (ii)�

1

(x) � �

2

(x) for each x 2 dom(�

2

), and (iii)� (x)

is either bool or a channel type of the form [�

1

; : : : ; �

n

] chan

U

with U � 0 for

each x 2 dom(�

1

)ndom(�

2

).

The operations j and ! on types and type environments are similar to those

in the previous type system, except that for channel types, they are de�ned by:

([�

1

; : : : ; �

n

] chan

U

1

) j ([�

1

; : : : ; �

n

] chan

U

2

) = [�

1

; : : : ; �

n

] chan

U

1

jU

2

!([�

1

; : : : ; �

n

] chan

U

) = [�

1

; : : : ; �

n

] chan

!U

The new typing rules are obtained by replacing (LT-Out) and (LT-In) of

the previous type system with the following rules:

�

i

` v

i

: �

i

(for each i 2 f1; : : : ; ng)

(�

1

j � � � j�

n

j�) = �; x : [�

1

; : : : ; �

n

] chan

U

�; x : [�

1

; : : : ; �

n

] chan

!:U

` x![v

1

; : : : ; v

n

] : proc

(UT-Out)

�; x : [�

1

; : : : ; �

n

] chan

U

; y : �

1

; : : : ; y : �

n

` P : proc

�; x : [�

1

; : : : ; �

n

] chan

?:U

` x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P : proc

(UT-In)

In rule (UT-In), the assumption �; x : [�

1

; : : : ; �

n

] chan

U

; y : �

1

; : : : ; y : �

n

` P :

proc implies that the channel x is used according to U after the input succeeds.

So, x is used according to ?:U in total. Similar ordering information is taken into

account in rule (UT-Out).

Example 4. The process lock?[]: if b then lock![] else 0 is well-typed under

the type environment b : bool; lock : [] chan

?:(!&0)

but not under b : bool; lock :

[] chan

?:!

. It implies that the lock may not be released correctly.

Example 5. The wrong CML program in Section 1 is expressed as:

proc f [x : int; r : [int] chan

!

] = (�y) y?[n]: r![n+ x]:

The usage of y is inferred to be ?. Therefore, we know that the process will be

blocked on the input on y forever.

7 A Type System for Deadlock-Freedom

The type systems presented so far do not guarantee that the ping server even-

tually returns a reply, that a lock is eventually released, etc. For example, the

type system in the previous section accepts the process

lock?[]: (�x) (�y) (x?[]: y![] j y?[]: (lock![] jx![]));

which does not release the lock because of deadlock on channels x and y.

We can prevent deadlocks by associating with each input (?) or output usage

(!) an obligation level and a capability level.

1

Intuitively, the obligation level of an

action denotes the degree of the necessity of the action being executed, while the

capability level of an action denotes the degree of the guarantee for the success

of the action.

We extend the syntax of types as follows.

� ::= bool j [�

1

; : : : ; �

n

] chan

U

U ::= 0 j � j?

t

o

t

c

:U j!

t

o

t

c

:U j (U

1

jU

2

) j U

1

& U

2

j ��:U

t (level) ::=1 j 0 j 1 j 2 j � � �

The two levels t

o

and t

c

in !

t

o

t

c

:U denote the obligation level and the capability

level of the output action respectively. Suppose that a channel has the usage

!

t

o

t

c

:U . Its obligation level t

o

means that a process can wait for the success of

only actions with capability levels of less than t

o

before using the channel for

output. For example, if y has usage !

2

0

in x?[]: y![], then the capability level of

the input on x must be 0 or 1. If the obligation level is 0, the channel must be

used for output immediately. If the obligation level is 1, arbitrary actions can

be performed before the channel is used for output. The capability level t

c

means

that the success of an output on the channel is guaranteed by a corresponding

input action with an obligation level of less than or equal to t

c

. In other words,

some process will use the channel for input before waiting for the success of an

action whose obligation level is greater than or equal to t

c

. If the capability level

is 1, the success of the output is not guaranteed. The meaning of the capability

and obligation levels of an input action is similar.

1

They were called time tags in earlier type systems for deadlock-freedom [12, 14, 28].

Using the obligation and capability levels, we can prevent cyclic dependencies

between communications. For example, recall the example above:

lock?[]: (�x) (�y) (x?[]: y![] j y?[]: (lock![] jx![]));

Suppose that the usage of x and y are ?

t

0

t

1

j !

t

1

t

0

and ?

t

2

t

3

j !

t

3

t

2

. From the process

x?[]: y![], we get the constraint t

1

< t

3

. From the process y?[]: (lock![] jx![]),

we get the constraint t

3

< t

1

. Therefore, it must be the case that t

1

= t

3

= 1.

(Here, we de�ne t < t holds if and only if t = 1.) Since the output on lock is

guarded by the input on y, the obligation level of the output on lock must also

be 1, which means that the lock may not be released.

Typing rules are the same as those for the type system in the previous section,

except for the following rules:

�

i

` v

i

: �

i

(for each i 2 f1; : : : ; ng) � ` P : proc

(�

1

j � � � j�

n

j�) = �; x : [�

1

; : : : ; �

n

] chan

U

t

c

< �

�; x : [�

1

; : : : ; �

n

] chan

!

t

c

t

o

:U

` x![v

1

; : : : ; v

n

]: P : proc

(DT-Out)

�; x : [�

1

; : : : ; �

n

] chan

U

; y : �

1

; : : : ; y : �

n

` P : proc t

c

< �

�; x : [�

1

; : : : ; �

n

] chan

?

t

c

t

o

:U

` x?[y

1

: �

1

; : : : ; y

n

: �

n

]: P : proc

(DT-In)

�; x : [�

1

; : : : ; �

n

] chan

U

` P : proc rel(U)

� ` (�x : [�

1

; : : : ; �

n

] chan

U

)P : proc

(DT-New)

The side condition t

c

< � in the rules (DT-Out) and (DT-In) expresses con-

straints on obligation and capability levels. It means that t

c

must be less than

all the obligation levels appearing at the top level (those which are not guarded

by ?: and !:).

The side condition rel(U) in the rule (DT-New) means that all the obligation

levels and the capability levels in U are consistent. For example, there must not

be the case like ?

1

0

j ?

1

1

, where there is an input action of capability level 0 but

there is no corresponding output action of obligation level 0.

The type system guarantees that any closed well-typed process is deadlock-

free in the sense that unless the process diverges, no input or output action with

a �nite capability level is blocked forever.

Example 6. The usage of a lock is re�ned as !

0

1

j �?

1

t

:!

t

1

. The part !

0

1

means

that a value must be put into the channel immediately (so as to simulate the

unlocked state). The part ?

1

t

means that any actions may be performed before

acquiring the lock and that once a process tries to acquire the lock, the process

can eventually acquire the lock. The part !

t

1

means that once a process has

acquired the lock, it can only perform actions with capability levels less than

t before releasing the lock. Suppose that locks l

1

and l

2

have usages �?

1

1

:!

1

1

and �?

1

2

:!

2

1

respectively. Then, it is allowed to acquire the lock l

2

�rst and

then acquire the lock l

1

before releasing l

2

: l

2

?[]: l

1

?[]: (l

1

![] j l

2

![]), but it is

not allowed to lock l

1

and l

2

in the reverse order: l

1

?[]: l

2

?[]: (l

1

![] j l

2

![]). Thus,

capability and obligation levels for lock channels correspond to the locking levels

in [5].

8 Putting All Together

In this section, we illustrate how the type systems introduced in this paper may

be applied to programming languages. The language we use below does not exist.

We borrow the syntax from ML [19], Pict [24], and HACL [15].

First, the ping server in Example 1 can be written as follows:

type 'a rep_chan = 'a chan(!o);

proc ping[r: [] rep_chan] = r![];

val ping = ch: ([] rep chan) chan(�!c)

Here, the �rst line de�nes an abbreviation for a type. The part !o is the channel

usage introduced in Section 6 and o means that the obligation level introduced

in Section 7 is �nite. In the second line, the type annotation for r asserts that

r should be used as a reply channel. (In the syntax of ML, [] in the type

annotation is unit.) The third line is the output of the type system. It says that

ping can be used an arbitrary number of times for sending a reply channel, and

it is guaranteed that the channel is received (c means that the capability level

is �nite) and a reply will eventually come back.

The following program forgets to send a reply in the else-clause:

proc ping2[b, r: [] rep_chan] = if b then r![] else 0;

Then, the system's output would be:

Error: r must have type [] rep chan

but it has type [] chan(!&0) in expression "if b then r![] else 0"

The following program de�nes a process to create a new lock:

type Lock = [] chan(*?c.!o);

proc newlock[r: Lock rep_chan] = (new l)(l![] | r![l]);

val newlock: (Lock rep chan) chan(�!c)

The process newlock takes a channel r as an argument, creates a new lock

channel, sets its state to the unlocked state, and returns the lock channel through

r. The system's output says that one can send a request for creating locks an

arbitrary number of times, that the request will be eventually received, and that

a lock will be sent back along the reply channel.

If a lock is used in a wrong manner, the program will be rejected:

(new r)(newlock![r] | r?[l].l?[].0)

Error: l must have type Lock

but it has type [] chan(?) in expression "l?[].0"

Since the lock l is not released in the program, the usage of l is not consistent

with the type Lock.

9 Conclusion

In this paper, we gave an overview of various type systems for the �-calculus,

from a simple type system to more advanced type systems for linearity, deadlock-

freedom, etc. We have mainly discussed the type systems from a programmer's

point of view, and focused on explaining how they can help �nding of bugs of

concurrent programs. Other applications of type systems include formal reason-

ing about program behavior through process equivalence theories [13, 21, 22, 26,

31], analysis of security properties [1, 8, 9] and optimization of concurrent pro-

grams [10, 29].

We think that type systems for concurrent programs are now mature enough

to be applied to real programming languages or analysis tools. To apply the type

systems, several issues need to be addressed, such as how to let programmers

annotate types, how to report type errors, etc. Some type systems have already

been applied; Pict [24] incorporates channel types with input/output modes and

higher-order polymorphism, and Flanagan and Freund [6] developed a tool for

race detection for Java.

Integration with other program veri�cation methods like model checking [3]

and theorem proving would be useful and important. Recent type systems [2, 11]

suggest one of such directions.

References

1. M. Abadi. Secrecy by typing in security protocols. JACM, 46(5):749{786, 1999.

2. S. Chaki, S. Rajamani, and J. Rehof. Types as models: Model checking message-

passing programs. In Proc. of POPL, pages 45{57, 2002.

3. J. Edmund M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT

Press, 1999.

4. C. Flanagan and M. Abadi. Object types against races. In CONCUR'99, volume

1664 of LNCS, pages 288{303. Springer-Verlag, 1999.

5. C. Flanagan and M. Abadi. Types for safe locking. In Proc. of ESOP 1999, volume

1576 of LNCS, pages 91{108, 1999.

6. C. Flanagan and S. N. Freund. Type-based race detection for Java. In Proc. of

PLDI, pages 219{232, 2000.

7. S. J. Gay. A sort inference algorithm for the polyadic �-calculus. In Proc. of

POPL, pages 429{438, 1993.

8. A. D. Gordon and A. Je�rey. Authenticity by typing for security protocols. In

Proceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW

2001), pages 145{159. IEEE Computer Society Press, 2001.

9. K. Honda and N. Yoshida. A uniform type structure for secure information ow.

In Proc. of POPL, pages 81{92, 2002.

10. A. Igarashi and N. Kobayashi. Type reconstruction for linear pi-calculus with I/O

subtyping. Info. Comput., 161:1{44, 2000.

11. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. In Proc.

of POPL, pages 128{141, January 2001.

12. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Trans. Prog.

Lang. Syst., 20(2):436{482, 1998.

13. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM

Trans. Prog. Lang. Syst., 21(5):914{947, 1999.

14. N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free pro-

cess calculus. In Proc. of CONCUR2000, volume 1877 of LNCS, pages 489{503.

Springer-Verlag, August 2000. The full version is available as technical report

TR00-01, Dept. Info. Sci., Univ. Tokyo.

15. N. Kobayashi and A. Yonezawa. Higher-order concurrent linear logic programming.

In Theory and Practice of Parallel Programming, volume 907 of LNCS, pages 137{

166. Springer-Verlag, 1995.

16. N. Kobayashi and A. Yonezawa. Towards foundations for concurrent object-

oriented programming { types and language design. Theory and Practice of Object

Systems, 1(4):243{268, 1995.

17. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, 1999.

18. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I, II. Infor-

mation and Computation, 100:1{77, September 1992.

19. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard

ML (Revised). The MIT Press, 1997.

20. H. R. Nielson and F. Nielson. Higher-order concurrent programs with �nite com-

munication topology. In Proc. of POPL, pages 84{97, 1994.

21. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-

matical Structures in Computer Science, 6(5):409{454, 1996.

22. B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.

JACM, 47(5):531{584, 2000.

23. B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In Theory

and Practice of Parallel Programming (TPPP), Sendai, Japan (Nov. 1994), volume

907 of LNCS, pages 187{215. Springer-Verlag, 1995.

24. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and

Interaction: Essays in Honour of Robin Milner, pages 455{494. MIT Press, 2000.

25. J. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

26. D. Sangiorgi. The name discipline of uniform receptiveness. Theor. Comput. Sci.,

221(1-2):457{493, 1999.

27. D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes.

Cambridge University Press, 2001.

28. E. Sumii and N. Kobayashi. A generalized deadlock-free process calculus. In

Proc. of Workshop on High-Level Concurrent Language (HLCL'98), volume 16(3)

of ENTCS, pages 55{77, 1998.

29. D. T. Turner. The polymorphic pi-calculus: Theory and implementation. PhD

Thesis, University of Edinburgh, 1996.

30. V. T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic �-calculus.

In CONCUR'93, volume 715 of LNCS, pages 524{538. Springer-Verlag, 1993.

31. N. Yoshida. Graph types for monadic mobile processes. In FST/TCS'16, volume

1180 of LNCS, pages 371{387. Springer-Verlag, 1996.

